How far back is carbon dating accurate

How far back is carbon dating accurate

To preserve these articles as they originally appeared, The Times does not alter, edit or update them. Occasionally the digitization process introduces transcription errors or other problems. Since , scientists have reckoned the ages of many old objects by measuring the amounts of radioactive carbon they contain. New research shows, however, that some estimates based on carbon may have erred by thousands of years. It is too soon to know whether the discovery will seriously upset the estimated dates of events like the arrival of human beings in the Western Hemisphere, scientists said. But it is already clear that the carbon method of dating will have to be recalibrated and corrected in some cases.

Carbon dating, rate of decay, how far can we go?

How far can you go back in time, and assume an accurate sample with carbon dating? It seems limited, how can an observer know the state of the decay of a certain molecular structure even , calendar years ago? Could there be other influences that would affect the rate of decay of carbon 14? If it has generally been established as a constant, at what point does the "constant" break down? The constant, that is the Strong Nuclear Force, is absolute. It'd have to be, it's what controls radioactivity and all other nuclear reactions.

If we surmise that the Strong Nuclear Force can change, then we have to explain why the Sun is still there. A bit in one way, the rate of fusion goes through the roof and the Sun blows itself apart. A bit in the other, the rate of fusion drops and the Sun collapses. Where "A bit" is a few parts in a trillion or less, most likely very much less. Carbon has a half-life of 5, years so decays fairly quickly to unusable proportions.

We also need to calibrate how much carbon it had to begin with. To do that we need records of how much was being made from nitrogen. To do that we need samples of atmospheric gas, from ice cores or solar activity from tree rings, etc. If we're a bit depleted in nitrogen, then we know it's become carbon We can get reasonable accuracy to 50, years, better accuracy more recently. This calibration is what limits the accuracy because we know that with a given amount of carbon, it absolutely will decay at a very tightly controlled rate.

Thanks, Hat Monster. Now, on to the next question, who held the stop watch at the Big Bang? Unfortunately, I was not able to attend that event, due to prior schedule conflicts. Originally posted by spoof: Oh, I remember you being there. You were just to hot to be sapient. Originally posted by Hat Monster: Isn't beta decay controlled by the weak force? Originally posted by Chuckles: Yes, it's all coalescing now, unfortunately, it merely seems like a dream.

Science cannot tell time. It can set a frame, or a parameter for the occurence of one event or another, but it has only the most recent reference for the age of any matter whatsoever. Short version? We have only arbitrary concepts of the age of matter as we know it. That's, to be as nice as I can, a pile of bullshit tall enough to be an aviation hazard. Originally posted by UserJoe: Also the reason that the neutrino and it's antiparticle interact infrequently. That's right, it's the weak force that governs beta decay.

My error, but doesn't detract from the post's content. The CMB. The technique for carbon dating is being refined to the point it is believed that reasonable accuracy may be achieved back to , years ago. Carbon dating works, btw, by comparing the ratio of C 14 to C The further back you go, the harder it gets to discern that difference accurately. Now, I'm interested to know what other radio-isotopes we can use to date old stuff. Like old rocks, for instance.

From wikipedia: Isotopic systems that have been exploited for radiometric dating have half-lives ranging only about 10 years e. Also, I believe potassium-argon is fairly common dating mechanism. Here is wikipedia's page on the topic: Radiometric dating they have a whole slew of dating mechanisms. OK, I'll admit it's a pile of bullshit, however, if you can't date anything with physical evidence even to , years, then no one has any idea how old lots of things are.

It's all extrapolation. I'm not pushing some creationist angle here, they just like to pick nice "round" numbers. No, I'll take scientific observations any day of the week, it's just that so much of science must, as a discipline, base their observations on the painstaking recording of observable physical data. When no observer is present, can we comfortably assume anything about the physical state of the universe at a time when no recorded physical data is available?

To merely observe the physics of atomic structures in the "here and now" and then state that "it's always been like this", seems somewhat presumptive. That's not true. The statement was that you can't use C dating for accuracy of over , years. However there are lots of other methods for radiometric dating available. Physical data like rock layers? Like types of rocks? Like physical processes? Like the speed of light? Do you have a testable theory as to why this would not be the case?

Science can provide rationale for the dating stated. Doubting simply so you can wag your finger and say "Nuh uh" isn't having an open mind -- it's simply being contrary. Originally posted by zeotherm: Radiometric dating they have a whole slew of dating mechanisms Excellent, thankyou. Yes, science bases its theories and concepts around concrete facts.

Even if there was some sort of Watcher race that stood in front of me and said that he was alive 10 billion years ago and bore witness to the birth of my planet, I would still insist on evidence. As a scientist, word of mouth means absolute nothing to me. Scientific statements need to be backed up by actual data. Well, I think you are putting the cart before the horse.

Forget your miffed dismissal of the current thought on the history of the universe. You postulate that the laws of physics may not be constant. The next step, using the scientific method, would be to come up with an experiment that would elicit a recordable change. In this specific case, try to manipulate the environment around a radioactive element to effect a change in the half-life constant. Now take that to the next step, to effect such a change you would need to effect the Weak Force directly within an atom or group of atoms.

So a revised, and more scientific, of your OP would be: Can the Weak Force within an atom be effected? Are half-life constants truely constant? I have no idea what the answer is off the top of my head, but my intelligent guess says that this topic has already been researched and literature exists on it. It was no doubt an important question when dating first took off. I find ranty non-scientific curt dismissals of theories with this sort of attitude half baked and highly aggravating.

It's like a little kid turning their nose up their parent cause they think they know better. Originally posted by BuckG: Grrr Very much so. It's even more aggravating when you look at the attitude that it tends to come with: Therefore, I am actually considering more than you are , which makes me better than you mere "scientists". I don't care if I have no idea how you could be wrong, I am smarter merely by suggesting you are mistaken.

Grrr Ouch. Fair enough, instead of opinionating, we'll just stick with the data from here on out. As it should be. Therefore, I am actually considering more than you are, which makes me better than you mere "scientists". Good question. As Hat Monster already pointed out, if these things were only slightly different from what they are now, the universe would be a vastly different place. There was a special on PBS about the universe, particles, strign theory, etc that covered this topic quite well.

Basically, by making even a small change in any fundamental particle, the whole puzzle gets tossed out the window. A good number of the subatomic particles we know about were calculated mathematically before they were ever discovered via observation. Heck, this is exactly why we are building the LHC. I don't think it was The Elegant Universe, but it could have been.

Not really.

At least to the uninitiated, carbon dating is generally assumed to be a that samples of moss could be brought back to life after being frozen in. How far can you go back in time, and assume an accurate sample with carbon dating? It seems limited, how can an observer know the state of.

Yes, I want to follow Jesus. I am a follower of Jesus. I still have questions.

May 03 Read

Radiocarbon dating can easily establish that humans have been on the earth for over twenty thousand years, at least twice as long as creationists are willing to allow. Therefore it should come as no surprise that creationists at the Institute for Creation Research ICR have been trying desperately to discredit this method for years.

Radiocarbon dating

Radiocarbon dating also referred to as carbon dating or carbon dating is a method for determining the age of an object containing organic material by using the properties of radiocarbon , a radioactive isotope of carbon. The method was developed in the late s by Willard Libby , who received the Nobel Prize in Chemistry for his work in It is based on the fact that radiocarbon 14 C is constantly being created in the atmosphere by the interaction of cosmic rays with atmospheric nitrogen. The resulting 14 C combines with atmospheric oxygen to form radioactive carbon dioxide , which is incorporated into plants by photosynthesis ; animals then acquire 14 C by eating the plants. When the animal or plant dies, it stops exchanging carbon with its environment, and from that point onwards the amount of 14 C it contains begins to decrease as the 14 C undergoes radioactive decay. Measuring the amount of 14 C in a sample from a dead plant or animal such as a piece of wood or a fragment of bone provides information that can be used to calculate when the animal or plant died.

Answers to Creationist Attacks on Carbon-14 Dating

Seventy years ago, American chemist Willard Libby devised an ingenious method for dating organic materials. His technique, known as carbon dating, revolutionized the field of archaeology. Now researchers could accurately calculate the age of any object made of organic materials by observing how much of a certain form of carbon remained, and then calculating backwards to determine when the plant or animal that the material came from had died. An isotope is a form of an element with a certain number of neutrons, which are the subatomic particles found in the nucleus of an atom that have no charge. While the number of protons and electrons in an atom determine what element it is, the number of neutrons can vary widely between different atoms of the same element. Nearly 99 percent of all carbon on Earth is Carbon, meaning each atom has 12 neutrons in its nucleus. The shirt you're wearing, the carbon dioxide you inhale and the animals and plants you eat are all formed mostly of Carbon Carbon is a stable isotope, meaning its amount in any material remains the same year-after-year, century-after-century.

How far can you go back in time, and assume an accurate sample with carbon dating?

.

How Accurate is Carbon Dating?

.

ERRORS ARE FEARED IN CARBON DATING

.

.

.

.

.

Carbon Dating Flaws
Related publications